Math 55 Discussion problems 2 Feb

1. Find two sets A and B such that $A \in B$ and $A \subseteq B$.
2. Show that $A \times B \neq B \times A$, when A and B are nonempty, unless $A=B$.
3. Let $A=\{a, b, c, d, e\}$ and $B=\{a, b, c, d, e, f, g, h\}$. Find
(a) $A \cup B$
(c) $A-B$
(b) $A \cap B$
(d) $B-A$
4. Prove or disprove that for all sets A, B, and C, we have
(a) $A \times(B \cup C)=(A \times B) \cup(A \times C)$
(b) $A \times(B \cap C)=(A \times B) \cap(A \times C)$
5. Give an example of a function from \mathbb{N} to \mathbb{N} that is
(a) one-to-one but not onto.
(b) onto but not one-to-one.
(c) both onto and one-to-one (but different from the identity function).
(d) neither one-to-one nor onto.
6. Suppose that g is a function from A to B and f is a function from B to C. Prove each of these statements.
(a) If $f \circ g$ is onto, then f must also be onto.
(b) If $f \circ g$ is one-to-one, then g must also be one-to-one.
(c) If $f \circ g$ is a bijection, then g is onto if and only if f is one-to-one.
